Fat-tailed Distributions for Investment Variables

David Wilkie
Şule Şahin

AFIR Colloquium, Florence, July 2019
Use “Wilkie model”

Fit model for each variable assuming normal residuals.

Take these residuals and fit different distributions.
Introduction

➢ Possible distributions

1. Normal
2. Laplace (double exponential)
3. Skew Laplace
4. Hyperbolic
5. Skew hyperbolic

➢ All examples of “conical distributions”
Conical Distributions

- Take some conic section: parabola, hyperbola, two straight lines
- Limit to those with full range for x, $-\infty$ to $+\infty$
 omit circle, ellipse, etc
- Arrange as $y = g(x)$
- Choose that part with $y < 0$
- Put $h(x) = \exp(y)$
- Take density $f(x) = k.h(x)$
- Find k so that $\int f(x).dx = 1$
 i.e. find $1 / k = \int h(x).dx$
Conical Distributions

- Parabola with nose at (0, 0) axis vertical

- This gives **Normal distribution**

\[y = -ax^2 \]
\[f(x) = k \cdot \exp(-ax^2) \]
\[\mu = 0 \quad 1/a = 2\sigma^2 \quad 1/k = \sigma \sqrt{2\pi} \]
Conical Distributions

- Two straight lines, symmetric, crossing at (0, 0)
 - Laplace, two symmetric exponentials
 \[f(x) = \alpha \cdot \exp(-\text{abs}(\alpha x)) / 2 \]
 \[k = \alpha / 2 \]
 \[0 < \alpha \]

Often parameterised with \(\lambda = 1/\alpha \)
Conical Distributions

- Two straight lines, skewed, crossing at (0, 0)
- **Skew Laplace**, two different exponentials, meeting at $x = 0$

$$f(x) = k \cdot \exp(\alpha(1+\rho)x) \quad x < 0$$

$$= k \cdot \exp(-\alpha(1-\rho)x) \quad x > 0$$

$$k = \frac{\alpha(1 - \rho^2)}{2}$$

$$0 < \alpha \quad -1 < \rho < +1$$

- Could be parameterised with λ_1, λ_2
Conical Distributions

- Hyperbola with main axis vertical
 asymptotes crossing at (0, 0) symmetric

- Gives hyperbolic
 \[f(x) = k \cdot \exp(-\alpha \delta \sqrt{1 + (x/\delta)^2}) \]
 \[1/k = 2\delta.K_1(\alpha \delta) \]
 \[K_1(.) \text{ is one of the Bessel functions} \]
 \[0 < \delta \quad 0 < \alpha \]
Conical Distributions

- Skew hyperbola gives skew hyperbolic
 \[f(x) = k \exp (-\alpha \delta \sqrt{1 + (x/\delta)^2} + \rho x/\delta) \]

- Put \(\gamma = \alpha \sqrt{1 - \rho^2} \)
 \[1/k = 2\alpha \delta K_1(\gamma \delta) / \gamma \]
 \(K_1(.) \) as before a Bessel function

- Often parameterised differently

- \(0 < \delta \quad 0 < \alpha \quad -1 < \rho < +1 \)
Conical Distributions

- All can be offset from (0, 0) to (μ, 0)

- For symmetric versions this gives mean μ

- For skew versions, mean depends on parameters

- There is a scale factor for each, e.g. σ, 1/α, δ
Conical Distributions

Conical functions

-6 -5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

-8 -7 -6 -5 -4 -3 -2 -1 0

- Parabola
- Two straight lines
- Two skew lines
- Hyperbola
- Skew hyperbola
Conical Distributions

Density functions, all with mean 0, variance 1

- Normal
- Laplace
- Skew Laplace
- Hyperbolic
- Skew Hyperbolic
Conical Distributions

Distribution functions

- **Normal**
- **Laplace**
- **Skew Laplace**
- **Hyperbolic**
- **Skew Hyperbolic**
Conical Distributions

- Limiting versions:
 - If \(\rho = -1 \) or \(\rho = +1 \)
 - One of the straight lines (or asymptotes) becomes the vertical axis.
 - No longer full range of \(x \)

- For hyperbola:
 - if \(\alpha = 0 \) we get two straight lines
 - if \(\alpha = \infty \) we get parabola
The Wilkie Model – Principal Variables

- Consumer prices index, Q
- Wages index, W
- Share dividends, D
- Share dividend yield, $Y = D/P$
- Share earnings, E
- Cover, $V = E/D$
- Multiple, $M = P/E$ ratio
- Long interest rate, C
- Short term interest rate, B
- Real yield on index-linked bonds, R
The Wilkie Model - Residuals

- For each series x, xZ is the standardised residual, i.e.
 \[
 \text{Normal (0, 1)}
 \]

- Consider first Skewness and Kurtosis
<table>
<thead>
<tr>
<th>Series</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>p(J-B)</th>
<th>Normal?</th>
</tr>
</thead>
<tbody>
<tr>
<td>QZ</td>
<td>1.31</td>
<td>6.39</td>
<td>0.0</td>
<td>No</td>
</tr>
<tr>
<td>WZ</td>
<td>0.39</td>
<td>3.92</td>
<td>0.0526</td>
<td>Possibly</td>
</tr>
<tr>
<td>YZ</td>
<td>0.35</td>
<td>3.57</td>
<td>0.1998</td>
<td>Yes</td>
</tr>
<tr>
<td>DZ</td>
<td>-0.74</td>
<td>4.22</td>
<td>0.0006</td>
<td>No</td>
</tr>
<tr>
<td>EZ</td>
<td>-0.29</td>
<td>10.30</td>
<td>0.0</td>
<td>No</td>
</tr>
<tr>
<td>VZ</td>
<td>0.37</td>
<td>3.67</td>
<td>0.3152</td>
<td>Yes</td>
</tr>
<tr>
<td>MZ</td>
<td>-0.64</td>
<td>4.57</td>
<td>0.0081</td>
<td>No</td>
</tr>
<tr>
<td>CZ</td>
<td>-0.75</td>
<td>5.50</td>
<td>0.0</td>
<td>No</td>
</tr>
<tr>
<td>BZ</td>
<td>-3.61</td>
<td>25.98</td>
<td>0.0</td>
<td>No</td>
</tr>
<tr>
<td>RZ</td>
<td>-0.34</td>
<td>2.43</td>
<td>0.5422</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Compare log-likelihood for other distribution with log-likelihood for Normal
Comparison of log-likelihoods for different dist.

<table>
<thead>
<tr>
<th>Series</th>
<th>L–N</th>
<th>SL–N</th>
<th>H–N</th>
<th>SH–N</th>
</tr>
</thead>
<tbody>
<tr>
<td>QZ</td>
<td>10.12</td>
<td>10.65</td>
<td>10.15</td>
<td>10.71</td>
</tr>
<tr>
<td>WZ</td>
<td>1.17</td>
<td>1.23</td>
<td>1.96</td>
<td>2.97</td>
</tr>
<tr>
<td>YZ</td>
<td>−3.23</td>
<td>−1.12</td>
<td>0.30</td>
<td>0.84</td>
</tr>
<tr>
<td>DZ</td>
<td>2.28</td>
<td>4.98</td>
<td>2.69</td>
<td>4.98</td>
</tr>
<tr>
<td>EZ</td>
<td>8.51</td>
<td>8.65</td>
<td>8.73</td>
<td>8.78</td>
</tr>
<tr>
<td>VZ</td>
<td>0.25</td>
<td>0.54</td>
<td>0.95</td>
<td>1.34</td>
</tr>
<tr>
<td>MZ</td>
<td>0.03</td>
<td>2.02</td>
<td>1.31</td>
<td>2.04</td>
</tr>
<tr>
<td>CZ</td>
<td>4.88</td>
<td>6.31</td>
<td>5.06</td>
<td>6.48</td>
</tr>
<tr>
<td>BZ</td>
<td>25.85</td>
<td>26.22</td>
<td>25.87</td>
<td>26.22</td>
</tr>
<tr>
<td>RZ</td>
<td>−1.69</td>
<td>−1.25</td>
<td>−0.01</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Skewness-Kurtosis Diagram

- Skewness-Kurtosis (S - K) diagram
- Normal (S, K) = (0, 3)
- Laplace (S, K) = (0, 6)
- Skew Laplace varies with \(\rho \) on a line from \((-2, 9)\) to \((0, 6)\) to \((+2, 9)\)
- Hyperbolic, \(S = 0 \), \(K \) varies with \(\alpha \) on a line \((0, 3)\) to \((0, 6)\)
- Skew Hyperbolic varies with \(\alpha \) and \(\rho \) within a ‘triangular’ area
Skewness-Kurtosis (S-K) Diagram
S-K Diagram with points for Actual Values
S-K Diagram - points for Actual and Fitted Values

- Skew Laplace
- Hyperbolic
- Skew Hyperbolic Rho = 0.25
- Skew Hyperbolic Rho = 0.99

- Actual data
- Fitted distributions
Comparison of log-likelihoods for different dist.

<table>
<thead>
<tr>
<th>Series</th>
<th>L–N</th>
<th>SL–N</th>
<th>H–N</th>
<th>SH–N</th>
</tr>
</thead>
<tbody>
<tr>
<td>QZ</td>
<td>10.12</td>
<td>10.65</td>
<td>10.15</td>
<td>10.71</td>
</tr>
<tr>
<td>WZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YZ</td>
<td>–3.23</td>
<td>–1.12</td>
<td>0.30</td>
<td>0.84</td>
</tr>
<tr>
<td>DZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MZ</td>
<td>0.03</td>
<td>2.02</td>
<td>1.31</td>
<td>2.04</td>
</tr>
<tr>
<td>CZ</td>
<td>4.88</td>
<td>6.31</td>
<td>5.06</td>
<td>6.48</td>
</tr>
<tr>
<td>BZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Normal: YZ, VZ, RZ
- Laplace: BZ, EZ
- Skew Laplace: DZ
- Hyperbolic: none
- Skew Hyperbolic: QZ, WZ, CZ, MZ
The Wilkie Model – Retail Prices

Actual and fitted densities, QZ

- Actual
- Normal
- Laplace
- Skew Laplace
- Hyperbolic
- Skew Hyperbolic

Density

X Value
The Wilkie Model – Simulations

- Simulations
 Normal as usual (Marsaglia’s method)
 Laplace by inversion
 Hyperbolic acceptance/rejection method

- Principal variables:
 \(Q, W, D, P, E \) index-type
 \(Y, V, M, C, B, R \) ratio-type

- Total Return indices, including income
 \(PT, CT, BT, RT \) index-type
The Wilkie Model – Simulations

Compound continuous rate of total return

\[GQL(t) = \frac{\ln(Q(t)) - \ln(Q(0))}{t} \]

\[= \frac{QL(t) - QL(0)}{t} \]

Nominal

\[GWL(t) = \frac{WL(t) - WL(0)}{t} \]

‘Real’ rate

\[GWLR(t) = GWL(t) - GQL(t) \]
The Wilkie Model – Simulations

- 1,000,000 simulations for 50 years.
- Very large amounts of output.

- Criteria based on quantiles $Q(a)$
 \[
 \frac{1}{2} (Q(1 - a) - Q(a)) / \text{Standard Deviation}
 \]

 - $a = 5\%$ gives 90% spread, C 90%
 - $a = 0.5\%$ gives 99% spread, C 99%

Normal C 90% = 1.64 and C 99% = 2.58
The Wilkie Model – Simulations

Retail Prices, $GQL(t)$

Results with Skew Hyperbolic innovations

<table>
<thead>
<tr>
<th>Term, t</th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>20</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skewness</td>
<td>0.59</td>
<td>0.44</td>
<td>0.28</td>
<td>0.19</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>5.99</td>
<td>4.76</td>
<td>3.69</td>
<td>3.32</td>
<td>3.16</td>
<td>3.06</td>
</tr>
<tr>
<td>C 90%</td>
<td>1.62</td>
<td>1.62</td>
<td>1.63</td>
<td>1.64</td>
<td>1.64</td>
<td>1.64</td>
</tr>
<tr>
<td>C 99%</td>
<td>3.19</td>
<td>2.99</td>
<td>2.77</td>
<td>2.67</td>
<td>2.62</td>
<td>2.60</td>
</tr>
</tbody>
</table>

- Kurtosis reduces with t so does Skewness
- C 90% same as Normal
- C 99% larger than Normal, reduces with t
Most variables like Normal with varying Kurtosis in year 1

But Long-term interest rates, C, with $GCTR(t)$ and Short-term interest rates, B, with $GBTR(t)$ different, because basic model mixes Normal and Lognormal so even with Normal innovations there is very high Kurtosis.
Future Work

- Still to do:
 - Re-estimate all the parameters of all the variables with an appropriate new distribution
 - For Retail Prices, Skew Laplace becomes best
REFERENCES

REFERENCES

REFERENCES

REFERENCES

- Wilkie, A.D. & Şahin Ş. (submitted to AAS). Yet more on a stochastic economic model: Part 6A, Allowing for parameter uncertainty with a hypermodel, and also fat-tailed Innovations for the retail prices model

- Wilkie, A.D. & Şahin Ş. (in draft). Yet more on a stochastic economic model: Part 6B, Investigating distributions for residuals using the Normal parameters for the skeleton